Integer powers of certain complex tridiagonal matrices and some complex factorizations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive integer powers of certain complex tridiagonal matrices

In this paper, we firstly present a general expression for the entries of the th r   N r power of certain -square n are complex tridiagonal matrix, in terms of the Chebyshev polynomials of the first kind. Secondly, we obtain two complex factorizations for Fibonacci and Pell numbers. We also give some Maple 13 procedures in order to verify our calculations.

متن کامل

Positive Integer Powers of the Tridiagonal Toeplitz Matrices

In this paper we present an explicit expression for the arbitrary positive integer powers of the tridiagonal Toeplitz matrices.

متن کامل

On twisted factorizations of block tridiagonal matrices

Non-symmetric and symmetric twisted block factorizations of block tridiagonal matrices are discussed. In contrast to non-blocked factorizations of this type, localized pivoting strategies can be integrated which improves numerical stability without causing any extra fill-in. Moreover, the application of such factorizations for approximating an eigenvector of a block tridiagonal matrix, given an...

متن کامل

Stable Factorizations of Symmetric Tridiagonal and Triadic Matrices

We call a matrix triadic if it has no more than two nonzero off-diagonal elements in any column. A symmetric tridiagonal matrix is a special case. In this paper we consider LXLT factorizations of symmetric triadic matrices, where L is unit lower triangular and X is diagonal, block diagonal with 1×1 and 2×2 blocks, or the identity with L lower triangular. We prove that with diagonal pivoting, th...

متن کامل

Spectral properties of certain tridiagonal matrices

We study spectral properties of irreducible tridiagonal k−Toeplitz matrices and certain matrices which arise as perturbations of them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2017

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1715715b